Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Biochem Pharmacol ; 222: 116106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442792

RESUMO

Lipins are phosphatidic acid phosphatases (PAP) that catalyze the conversion of phosphatidic acid (PA) to diacylglycerol (DAG). Three lipin isoforms have been identified: lipin-1, -2 and -3. In addition to their PAP activity, lipin-1 and -2 act as transcriptional coactivators and corepressors. Lipins have been intensely studied for their role in regulation of lipid metabolism and adipogenesis; however, lipins are hypothesized to mediate several pathologies, such as those involving metabolic diseases, neuropathy and even cognitive impairment. Recently, an emerging role for lipins have been proposed in cancer. The study of lipins in cancer has been hampered by lack of inhibitors that have selectivity for lipins, that differentiate between lipin family members, or that are suitable for in vivo studies. Such inhibitors have the potential to be extremely useful as both molecular tools and therapeutics. This review describes the expression and function of lipins in various tissues and their roles in several diseases, but with an emphasis on their possible role in cancer. The mechanisms by which lipins mediate cancer cell growth are discussed and the potential usefulness of selective lipin inhibitors is hypothesized. Finally, recent studies reporting the crystallization of lipin-1 are discussed to facilitate rational design of novel lipin inhibitors.


Assuntos
Neoplasias , Fosfatidato Fosfatase , Fosfatidato Fosfatase/química , Fosfatidato Fosfatase/metabolismo , Adipogenia , Isoformas de Proteínas/metabolismo , Ácidos Fosfatídicos/metabolismo , Neoplasias/tratamento farmacológico , Compostos Orgânicos
2.
Biophys J ; 122(22): 4382-4394, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37853695

RESUMO

The ß-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Canais de Translocação SEC/metabolismo , Proteínas de Escherichia coli/metabolismo , Membrana Celular/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Dobramento de Proteína , Fosfatidato Fosfatase/metabolismo
3.
Bull Entomol Res ; 113(5): 665-675, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37555240

RESUMO

Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.


Assuntos
Bombyx , Diapausa de Inseto , Diapausa , Feminino , Animais , Bombyx/genética , Diapausa de Inseto/genética , Fosfatidato Fosfatase/metabolismo , RNA/metabolismo , Metabolismo dos Lipídeos , Adenosina/metabolismo , Óvulo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
4.
J Agric Food Chem ; 71(22): 8527-8539, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224334

RESUMO

Goat milk is increasingly recognized by consumers due to its high nutritional value, richness in short- and medium-chain fatty acids, and richness in polyunsaturated fatty acids (PUFA). Exogenous supplementation of docosahexaenoic acid (DHA) is an important approach to increasing the content of PUFA in goat milk. Several studies have reported benefits of dietary DHA in terms of human health, including potential against chronic diseases and tumors. However, the mechanisms whereby an increased supply of DHA regulates mammary cell function is unknown. In this study, we investigated the effect of DHA on lipid metabolism processes in goat mammary epithelial cells (GMEC) and the function of H3K9ac epigenetic modifications in this process. Supplementation of DHA promoted lipid droplet accumulation increased the DHA content and altered fatty acid composition in GMEC. Lipid metabolism processes were altered by DHA supplementation through transcriptional programs in GMEC. ChIP-seq analysis revealed that DHA induced genome-wide H3K9ac epigenetic changes in GMEC. Multiomics analyses (H3K9ac genome-wide screening and RNA-seq) revealed that DHA-induced expression of lipid metabolism genes (FASN, SCD1, FADS1, FADS2, LPIN1, DGAT1, MBOAT2), which were closely related with changes in lipid metabolism processes and fatty acid profiles, were regulated by modification of H3K9ac. In particular, DHA increased the enrichment of H3K9ac in the promoter region of PDK4 and promoted its transcription, while PDK4 inhibited lipid synthesis and activated AMPK signaling in GMEC. The activation of the expression of fatty acid metabolism-related genes FASN, FADS2, and SCD1 and their upstream transcription factor SREBP1 by the AMPK inhibitor was attenuated in PDK4-overexpressing GMEC. In conclusion, DHA alters lipid metabolism processes via H3K9ac modifications and the PDK4-AMPK-SREBP1 signaling axis in goat mammary epithelial cells, providing new insights into the mechanism through which DHA affects mammary cell function and regulates milk fat metabolism.


Assuntos
Ácidos Docosa-Hexaenoicos , Metabolismo dos Lipídeos , Humanos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Epigênese Genética , Cabras/genética , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
5.
Ecotoxicol Environ Saf ; 250: 114514, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608563

RESUMO

Endocrine disruptors (EDs), capable of modulating the sex hormone system of an organism, can exert long-lasting negative effects on reproduction in both humans and the environment. For these reasons, the properties of EDs prevent a substance from being approved for marketing. However, regulatory testing to evaluate endocrine disruption is time-consuming, costly, and animal-intensive. Here, we combined sublethal zebrafish embryo assays with transcriptomics and proteomics for well-characterized endocrine disrupting reference compounds to identify predictive biomarkers for sexual endocrine disruption in this model. Using RNA and protein gene expression fingerprints from two different sublethal exposure concentrations, we identified specific signatures and impaired biological processes induced by ethinylestradiol, tamoxifen, methyltestosterone and flutamide 96 h post fertilization (hpf). Our study promotes vtg1 as well as cyp19a1b, fam20cl, lhb, lpin1, nr1d1, fbp1b, and agxtb as promising biomarker candidates for identifying and differentiating estrogen and androgen receptor agonism and antagonism. Evaluation of these biomarkers for pre-regulatory zebrafish embryo-based bioassays will help identify endocrine disrupting hazards of compounds at the molecular level. Such approaches additionally provide weight-of-evidence for the identification of putative EDs and may contribute significantly to a reduction in animal testing in higher tier studies.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Estrogênios/metabolismo , Expressão Gênica , Fosfatidato Fosfatase/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
6.
Nat Commun ; 14(1): 489, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717587

RESUMO

Vascular repair is considered a key restorative measure to improve long-term outcomes after ischemic stroke. N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNAs, functionally mediates vascular repair. However, whether circular RNA SCMH1 (circSCMH1) promotes vascular repair by m6A methylation after stroke remains to be elucidated. Here, we identify the role of circSCMH1 in promoting vascular repair in peri-infarct cortex of male mice and male monkeys after photothrombotic (PT) stroke, and attenuating the ischemia-induced m6A methylation in peri-infarct cortex of male mice after PT stroke. Mechanically, circSCMH1 increased the translocation of ubiquitination-modified fat mass and obesity-associated protein (FTO) into nucleus of endothelial cells (ECs), leading to m6A demethylation of phospholipid phosphatase 3 (Plpp3) mRNA and subsequently the increase of Plpp3 expression in ECs. Our data demonstrate that circSCMH1 enhances vascular repair via FTO-regulated m6A methylation after stroke, providing insights into the mechanism of circSCMH1 in promoting stroke recovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Fosfatidato Fosfatase , RNA Circular , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Células Endoteliais/metabolismo , Infarto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
7.
Med Oncol ; 39(12): 256, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224382

RESUMO

Breast cancer is one of the most aggressive and lethal types of transformation among women. An anomaly of normal fatty acid metabolism is acknowledged as a critical trigger for malignant transformations including breast cancer, but the prospect of targeting fatty acid metabolism for the treatment of malignancy has remained unrecognized so far. It has been observed that specific fatty acid metabolism genes are involved in the commencement and development of breast cancer. These specific genes have also been observed to be related to different isotypes/molecular subtypes of breast cancer. The main purpose of this study was to scrutinize the prognostic significance, functional role, and expression pattern of fatty acid metabolism genes. In-Silico tools like TCGA BrCA, Gepia2, Ualcan Analysis, UCSC Xena, Kaplan-Meier plotter, Bc-gene EXminer, String, gene ontology, and KEGG databases, were used to assess the expression pattern of the fatty acid metabolism genes in breast cancer patients and also among the different molecular sub-types of breast cancer. Differential gene expression analysis revealed dysregulation of FABP4, FABP5, PLIN1, ï»¿PLIN2, PLIN4, PLIN5, LPIN1, MGLL, PNPLA2, PNPLA7, ACSL1, and ACOX2 showing a fold change > ± 1.5. Also, most of these genes show downregulation in Ualcan analysis of different isotypes/molecular subtypes of breast cancer. The study reveals that the screened genes i.e., FABP4, FABP5, PLIN1, PLIN2, PLIN4, PLIN5, LPIN1, MGLL, PNPLA2, PNPLA7, ACSL1, and ACOX2 can be used as biomarkers that reveal poor prognosis and may serve as therapeutic targets for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Prognóstico
8.
Lab Invest ; 102(10): 1075-1087, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35672379

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, characterized by excessive hepatic lipid accumulation. Recently, we demonstrated that Smad ubiquitination regulatory factor 1 (Smurf1) deficiency significantly alleviates mouse hepatic steatosis. However, the mechanism of Smurf1-regulating hepatic lipid accumulation requires further exploration and clarification. Hence, this study explores the potential mechanism of Smurf1 in hepatic steatosis. In this study, hepatic Smurf1 proteins in NAFLD patients and healthy individuals were determined using immunohistochemical staining. Control and NAFLD mouse models were established by feeding Smurf1-knockout (KO) and wild-type mice with either a high-fat diet (HFD) or a chow diet (CD) for eight weeks. Oleic acid (OA)-induced steatotic hepatocytes were used as the NAFLD mode cells. Lipid content in liver tissues was analyzed. Smurf1-MDM2 interaction, MDM2 and p53 ubiquitination, and p53 target genes expression in liver tissues and hepatocytes were analyzed. We found that hepatic Smurf1 is highly expressed in NAFLD patients and HFD-induced NAFLD mice. Its deletion attenuates hepatocyte steatosis. Mechanistically, Smurf1 interacts with and stabilizes mouse double minute 2 (MDM2), promoting p53 degradation. In Smurf1-deficient hepatocytes, an increase in p53 suppresses SREBP-1c expression and elevates the expression of both malonyl-CoA decarboxylase (MCD) and lipin1 (Lpin1), two essential proteins in lipid catabolism. Contrarily, the activities of these three proteins and hepatocyte steatosis are reversed by p53 knockdown in Smurf1-deficient hepatocytes. This study shows that Smurf1 is involved in the pathogenesis of NAFLD by balancing de novo lipid synthesis and lipolysis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína Supressora de Tumor p53/genética
9.
Sci Rep ; 12(1): 2390, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149744

RESUMO

Studies on 3T3-L1 cells and HepG2 hepatocytes have shown that phosphatidic acid phosphohydrolase1 (LPIN1) plays a key role in adipogenesis, acting as a co-activator of peroxisome proliferator-activated receptor gamma coactivator 1a (PGC-1a) to regulate fatty acid metabolism. However, the functional role and regulatory mechanism of LPIN1 gene in milk fat synthesis of buffalo are still unknown. In this study, overexpression of buffalo LPIN1 gene transfected with recombinant fusion expression vector significantly increased the expression of AGPAT6, DGAT1, DGAT2, GPAM and BTN1A1 genes involved in triglyceride (TAG) synthesis and secretion, as well as PPARG and SREBF1 genes regulating fatty acid metabolism in the buffalo mammary epithelial cells (BMECs), while the lentivirus-mediated knockdown of buffalo LPIN1 dramatically decreased the relative mRNA abundance of these genes. Correspondingly, total cellular TAG content in the BMECs increased significantly after LPIN1 overexpression, but decreased significantly after LPIN1 knockdown. In addition, the overexpression or knockdown of PPARG also enhanced or reduced the expression of LPIN1 and the transcriptional activity of its promoter. The core region of buffalo LPIN1 promoter spans from - 666 bp to + 42 bp, and two PPAR response elements (PPREs: PPRE1 and PPRE2) were identified in this region. Site mutagenesis analysis showed that PPARG directly regulated the transcription of buffalo LPIN1 by binding to the PPRE1 and PPRE2 on its core promoter. The results here reveal that the LPIN1 gene is involved in the milk fat synthesis of BMECs, and one of the important pathways is to participate in this process through direct transcriptional regulation of PPARG, which in turn significantly affects the content of TAG in BMECs.


Assuntos
Búfalos/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , PPAR gama/metabolismo , Fosfatidato Fosfatase/genética , Triglicerídeos/biossíntese , Animais , Búfalos/genética , Feminino , Regulação da Expressão Gênica , Leite/metabolismo , PPAR gama/genética , Fosfatidato Fosfatase/metabolismo , Transcrição Gênica
10.
J Hypertens ; 40(3): 536-543, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772856

RESUMO

BACKGROUND: We previously showed Lipin1 (LPIN1) to be a candidate gene for essential hypertension by genome-wide association studies. LPIN1 encodes the Lipin 1 protein, which contributes to the maintenance of lipid metabolism and glucose homeostasis. However, little is known about the association between LPIN1 and blood pressure (BP). METHODS: We evaluated the BP of LPIN1-deficient [fatty liver dystrophy (fld)] mice and explored related mechanisms. RESULTS: Fld mice have very low expression of LPIN1 and exhibit fatty liver, hypertriglyceridemia, insulin resistance and peripheral neuropathy. Fld mice had significantly elevated SBP and heart rate (HR) throughout the day as measured by a radiotelemetric method. Diurnal variation of SBP and HR was also absent in fld mice. Furthermore, urinary excretion of adrenaline and noradrenaline by fld mice was significantly higher compared with that of control mice. The BP response of fld mice to clonidine (a centrally acting α2-adrenergic receptor agonist) was greater than that of control mice. However, levels of Angiotensinogen and Renin 1 mRNA and urinary nitric oxide excretion were comparable between the two groups. The decrease in SBP at 8 weeks after fat grafting surgery was significantly greater in the transplant group compared with the sham operated group. CONCLUSION: The elevated BP in fld mice may result from activation of the sympathetic nervous system through decreased levels of adipose cytokines. These results indicate that LPIN1 plays a crucial role in blood pressure regulation and that LPIN1 is a new target gene for essential hypertension.


Assuntos
Fígado Gorduroso , Estudo de Associação Genômica Ampla , Tecido Adiposo , Animais , Hipertensão Essencial/tratamento farmacológico , Hipertensão Essencial/genética , Camundongos , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
11.
Nutrients ; 13(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34959999

RESUMO

In this study, we investigated the pharmacological effect of a water extract of Raphani Semen (RSWE) on alcoholic fatty liver disease (AFLD) using ethanol-induced AFLD mice (the NIAAA model) and palmitic acid (PA)-induced steatosis HepG2 cells. An RSWE supplement improved serum and hepatic triglyceride (TG) levels of AFLD mice, as well as their liver histological structure. To explore the molecular action of RSWE in the improvement of AFLD, we investigated the effect of RSWE on four major pathways for lipid homeostasis in the liver: free fatty acid transport, lipogenesis, lipolysis, and ß-oxidation. Importantly, RSWE decreased the mRNA expression of de novo lipogenesis-related genes, such as Srebf1, Cebpa, Pparg, and Lpin1, as well as the protein levels of these factors, in the liver of AFLD mice. That these actions of RSWE affect lipogenesis was confirmed using PA-induced steatosis HepG2 cells. Overall, our findings suggest that RSWE has the potential for improvement of AFLD by inhibiting de novo lipogenesis.


Assuntos
Fígado Gorduroso Alcoólico/tratamento farmacológico , Lipogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raphanus/química , Sementes/química , Animais , Etanol/efeitos adversos , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Ácido Palmítico/efeitos adversos , Fosfatidato Fosfatase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue
12.
Dev Cell ; 56(24): 3364-3379.e10, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34852214

RESUMO

Failure to reorganize the endoplasmic reticulum (ER) in mitosis results in chromosome missegregation. Here, we show that accurate chromosome segregation in human cells requires cell cycle-regulated ER membrane production. Excess ER membranes increase the viscosity of the mitotic cytoplasm to physically restrict chromosome movements, which impedes the correction of mitotic errors leading to the formation of micronuclei. Mechanistically, we demonstrate that the protein phosphatase CTDNEP1 counteracts mTOR kinase to establish a dephosphorylated pool of the phosphatidic acid phosphatase lipin 1 in interphase. CTDNEP1 control of lipin 1 limits the synthesis of fatty acids for ER membrane biogenesis in interphase that then protects against chromosome missegregation in mitosis. Thus, regulation of ER size can dictate the biophysical properties of mitotic cells, providing an explanation for why ER reorganization is necessary for mitotic fidelity. Our data further suggest that dysregulated lipid metabolism is a potential source of aneuploidy in cancer cells.


Assuntos
Ciclo Celular , Segregação de Cromossomos , Retículo Endoplasmático/metabolismo , Linhagem Celular , Ácidos Graxos/biossíntese , Humanos , Metáfase , Micronúcleo Germinativo/metabolismo , Mitose , Modelos Biológicos , Fosfatidato Fosfatase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo , Viscosidade
13.
Cell Rep Med ; 2(8): 100370, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467247

RESUMO

LPIN1 mutations are responsible for inherited recurrent rhabdomyolysis, a life-threatening condition with no efficient therapeutic intervention. Here, we conduct a bedside-to-bench-and-back investigation to study the pathophysiology of lipin1 deficiency. We find that lipin1-deficient myoblasts exhibit a reduction in phosphatidylinositol-3-phosphate close to autophagosomes and late endosomes that prevents the recruitment of the GTPase Armus, locks Rab7 in the active state, inhibits vesicle clearance by fusion with lysosomes, and alters their positioning and function. Oxidized mitochondrial DNA accumulates in late endosomes, where it activates Toll-like receptor 9 (TLR9) and triggers inflammatory signaling and caspase-dependent myolysis. Hydroxychloroquine blocks TLR9 activation by mitochondrial DNA in vitro and may attenuate flares of rhabdomyolysis in 6 patients treated. We suggest a critical role for defective clearance of oxidized mitochondrial DNA that activates TLR9-restricted inflammation in lipin1-related rhabdomyolysis. Interventions blocking TLR9 activation or inflammation can improve patient care in vivo.


Assuntos
Mitocôndrias/metabolismo , Fosfatidato Fosfatase/metabolismo , Rabdomiólise/patologia , Autofagossomos/metabolismo , Criança , Pré-Escolar , Cloroquina/farmacologia , DNA Mitocondrial/metabolismo , Endossomos/metabolismo , Feminino , Seguimentos , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Inflamação/patologia , Lisossomos/metabolismo , Masculino , Mioblastos/metabolismo , Fosfatidato Fosfatase/deficiência , Fosfatos de Fosfatidilinositol , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , proteínas de unión al GTP Rab7/metabolismo
14.
Reprod Sci ; 28(2): 524-531, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32944878

RESUMO

CZ415, a novel inhibitor of mammalian target of rapamycin (mTOR) kinase, has demonstrated anti-tumor activity in several types of cancer. However, its biological function and underlying mechanism of action in cervical cancer (CC) have not been fully studied. Two CC cell lines (Hela and Siha) were treated with increasing concentrations of CZ415. Cell viability was tested with the CCK-8 assay, cell proliferation was determined by Edu staining and the colony formation assay, and apoptosis was determined by flow cytometry and Hoechst 33342 staining. Protein expression was evaluated by western blotting. A nude mouse xenograft model was used to confirm the anti-tumor activity of CZ415 in vivo. Hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining were performed on samples of tumor tissue. Results showed that CZ415 inhibited CC cell survival in a dose- and time-dependent manner, and 100 nanomolar and 48 h were the optimal conditions. In vitro and in vivo experiments showed that treatment with CZ415 significantly inhibited spheroid formation, cell proliferation, and tumor growth. Further studies showed that the anti-cancer effects of CZ415 were due to an induction of apoptosis, which was accompanied by an upregulation of Bax and downregulation of Bcl-2 through Lipin-1. CZ415 also reduced the levels of mTOR/STAT3 expression. However, these phenotypic changes were reversed by overexpression of Lipin-1. Our results suggest that the novel mTOR inhibitor CZ415 mediates tumor malignancy via Lipin-1 and might be useful for treating CC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Óxidos S-Cíclicos/farmacologia , Compostos de Fenilureia/farmacologia , Fosfatidato Fosfatase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Feminino , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Fosfatidato Fosfatase/genética , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Sci ; 112(2): 792-802, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33274548

RESUMO

Phosphatidylinositol-3 kinase (PI3K) inhibitor and histone deacetylase (HDAC) inhibitor have been developed as potential anticancer drugs. However, the cytotoxicity of PI3K inhibitor or HDAC inhibitor alone is relatively weak. We recently developed a novel HDAC/PI3K dual inhibitor FK-A11 and confirmed its enhanced cytotoxicity when compared to that of PI3K inhibitor or HDAC inhibitor alone on several cancer cell lines. However, the in vivo antitumor activity of FK-A11 was insufficient. We conducted high-throughput RNA interfering screening and identified gene LPIN1 which enhances the cytotoxicity of FK-A11. Downregulation of LPIN1 enhanced simultaneous inhibition of HDAC and PI3K by FK-A11 and enhanced the cytotoxicity of FK-A11. Propranolol, a beta-adrenoreceptor which is also a LPIN1 inhibitor, enhanced the in vitro and in vivo cytotoxicity and antitumor effect of FK-A11. These findings should help in the development of FK-A11 as a novel HDAC/PI3K dual inhibitor.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Fosfatidato Fosfatase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 11(1): 5842, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203880

RESUMO

Increased lipogenesis has been linked to an increased cancer risk and poor prognosis; however, the underlying mechanisms remain obscure. Here we show that phosphatidic acid phosphatase (PAP) lipin-1, which generates diglyceride precursors necessary for the synthesis of glycerolipids, interacts with and is a direct substrate of the Src proto-oncogenic tyrosine kinase. Obesity-associated microenvironmental factors and other Src-activating growth factors, including the epidermal growth factor, activate Src and promote Src-mediated lipin-1 phosphorylation on Tyr398, Tyr413 and Tyr795 residues. The tyrosine phosphorylation of lipin-1 markedly increases its PAP activity, accelerating the synthesis of glycerophospholipids and triglyceride. Alteration of the three tyrosine residues to phenylalanine (3YF-lipin-1) disables lipin-1 from mediating Src-enhanced glycerolipid synthesis, cell proliferation and xenograft growth. Re-expression of 3YF-lipin-1 in PyVT;Lpin1-/- mice fails to promote progression and metastasis of mammary tumours. Human breast tumours exhibit increased p-Tyr-lipin-1 levels compared to the adjacent tissues. Importantly, statistical analyses show that levels of p-Tyr-lipin-1 correlate with tumour sizes, lymph node metastasis, time to recurrence and survival of the patients. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic Src, providing a mechanistic link between obesity-associated mitogenic signaling and breast cancer malignancy.


Assuntos
Neoplasias da Mama/patologia , Proteína Tirosina Quinase CSK/genética , Fosfatidato Fosfatase/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Proteína Tirosina Quinase CSK/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Lipogênese/fisiologia , Masculino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos Mutantes , Camundongos Transgênicos , Fosfatidato Fosfatase/genética , Fosforilação , Proto-Oncogene Mas , Tirosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Mol Cell Cardiol ; 149: 95-114, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017574

RESUMO

OBJECTIVE: Acute myocardial infarction (AMI) initiates pathological inflammation which aggravates tissue damage and causes heart failure. Lysophosphatidic acid (LPA), produced by autotaxin (ATX), promotes inflammation and the development of atherosclerosis. The role of ATX/LPA signaling nexus in cardiac inflammation and resulting adverse cardiac remodeling is poorly understood. APPROACH AND RESULTS: We assessed autotaxin activity and LPA levels in relation to cardiac and systemic inflammation in AMI patients and C57BL/6 (WT) mice. Human and murine peripheral blood and cardiac tissue samples showed elevated levels of ATX activity, LPA, and inflammatory cells following AMI and there was strong correlation between LPA levels and circulating inflammatory cells. In a gain of function model, lipid phosphate phosphatase-3 (LPP3) specific inducible knock out (Mx1-Plpp3Δ) showed higher systemic and cardiac inflammation after AMI compared to littermate controls (Mx1-Plpp3fl/fl); and a corresponding increase in bone marrow progenitor cell count and proliferation. Moreover, in Mx1- Plpp3Δ mice, cardiac functional recovery was reduced with corresponding increases in adverse cardiac remodeling and scar size (as assessed by echocardiography and Masson's Trichrome staining). To examine the effect of ATX/LPA nexus inhibition, we treated WT mice with the specific pharmacological inhibitor, PF8380, twice a day for 7 days post AMI. Inhibition of the ATX/LPA signaling nexus resulted in significant reduction in post-AMI inflammatory response, leading to favorable cardiac functional recovery, reduced scar size and enhanced angiogenesis. CONCLUSION: ATX/LPA signaling nexus plays an important role in modulating inflammation after AMI and targeting this mechanism represents a novel therapeutic target for patients presenting with acute myocardial injury.


Assuntos
Inflamação/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Remodelação Vascular , Animais , Benzoxazóis/farmacologia , Contagem de Células , Movimento Celular/efeitos dos fármacos , Feminino , Deleção de Genes , Humanos , Inflamação/genética , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mielopoese , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Miocárdio/patologia , Fosfatidato Fosfatase/metabolismo , Piperazinas/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Regulação para Cima/genética , Cicatrização
18.
Immunohorizons ; 4(10): 659-669, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077427

RESUMO

Macrophages reprogram their metabolism to promote appropriate responses. Proresolving macrophages primarily use fatty acid oxidation as an energy source. Metabolites generated during the catabolism of fatty acids aid in the resolution of inflammation and tissue repair, but the regulatory mechanisms that control lipid metabolism in macrophages are not fully elucidated. Lipin-1, a phosphatidic acid phosphatase that has transcriptional coregulator activity, regulates lipid metabolism in a variety of cells. In this current study, we show that lipin-1 is required for increased oxidative phosphorylation in IL-4 stimulated mouse (Mus musculus) macrophages. We also show that the transcriptional coregulatory function of lipin-1 is required for ß-oxidation in response to palmitate (free fatty acid) and apoptotic cell (human) stimulation. Mouse bone marrow-derived macrophages lacking lipin-1 have a reduction in critical TCA cycle metabolites following IL-4 stimulation, suggesting a break in the TCA cycle that is supportive of lipid synthesis rather than lipid catabolism. Together, our data demonstrate that lipin-1 regulates cellular metabolism in macrophages in response to proresolving stimuli and highlights the importance of aligning macrophage metabolism with macrophage phenotype.


Assuntos
Polaridade Celular/genética , Interleucina-4/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Fosfatidato Fosfatase/metabolismo , Animais , Polaridade Celular/imunologia , Células Cultivadas , Expressão Gênica , Técnicas de Inativação de Genes , Inflamação/genética , Inflamação/imunologia , Interleucina-4/genética , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidato Fosfatase/genética , Cicatrização/genética , Cicatrização/imunologia
19.
Biomolecules ; 10(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887262

RESUMO

Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1-3) that belong to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins, which are localized on plasma membranes and intracellular membranes, including the endoplasmic reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate different effects in cancer progression through the breakdown of extracellular LPA and S1P and other intracellular substrates. This review is intended to summarize an up-to-date understanding about the functions of LPPs in cancers.


Assuntos
Neoplasias/enzimologia , Neoplasias/genética , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Fosfatidato Fosfatase/química , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo , Regulação para Cima
20.
Cell Commun Signal ; 18(1): 147, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912335

RESUMO

BACKGROUND: Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD+-dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD). METHODS: Studies were conducted in wild-type (WT) and Sirt3-/- mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells. RESULTS: Sirt3-/- mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3-/- mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385. CONCLUSION: These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.


Assuntos
Antígenos CD36/metabolismo , Fígado Gorduroso/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidato Fosfatase/metabolismo , Sirtuína 3/genética , Animais , Linhagem Celular , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Deleção de Genes , Humanos , Lipogênese , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sirtuína 3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA